And engine without a spark plug is useless, unless it's a diesel engine in which case it uses a glowplug instead. But we're talking about regular petrol engines here so the next topic to get to grips with is the spark plug. It does exactly what it says on the tin - it's a plug that generates a spark. Duh. So why spend time talking about it? Well with apologies to George Orwell not all spark plugs are created equal. Some are more equal than others. They'll all do the job but the more you pay, the better the plug. All spark plugs share the same basic design and construction though.
The high voltage from your vehicle's high-tension electrical system is fed into the terminal at the top of the spark plug. It travels down through the core of the plug (normally via some noise-suppression components to prevent electrical noise) and arrives at the centre electrode at the bottom where it jumps to the ground electrode creating a spark. The crush washer is designed to be crushed by tightening the spark plug down when it's screwed into the cylinder head, and as such, it helps keep the screw threads under tension to stop the spark plug from shaking loose or backing out. The insulator basically keeps the high-tension charge away from the cylinder head so that the spark plug doesn't ground before it gets a chance to generate the spark.
The type of plug I've illustrated here is known as a projected nose type plug, because the tip extends below the bottom of the spark plug itself. The other main type of spark plug has the centre electrode recessed into the plug itself and merely grounds to the collar at the bottom. The advantage of the projected nose type is that the spark is better exposed to the fuel-air mixture.


Heat ranges. Something that is often overlooked in spark plugs is their heat rating or heat range. The term "heat range" refers to the relative temperature of the tip of the spark plug when its working. The hot and cold classifications often cause confusion because a 'hot' spark plug is normally used in a 'cold' (low horsepower) engine and vice versa. The term actually refers to the thermal characteristics of the plug itself, specifically its ability to dissipate heat into the cooling system. A cold plug can get rid of heat very quickly and should be used in engines that run hot and lean. A hot plug takes longer to cool down and should be used in lower compression engines where heat needs to be retained to prevent combustion byproduct buildup.